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The Smoluchowski equation for irreversible coagulation is generalized by taking both

two- and three-particle aggregations into account. The effects of three-particle events are

studied through the exact solution of a special model.
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Coagulation phenomena occur in many fields of science and technology, for in-

stance in colloid and polymer chemistry, in aerosol science, in biology (red blood

cells) and in food technology. The usual decription of the coagulation kinetics is via a

set of rate equations for the concentrations ck (t) of aggregates consisting of k units:
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Equation (1) is known as the Smoluchowski coagulation equation [1]. The de-

pendence of the rate constants Kij on the sizes i and j of the two aggregates that form an

n-mer will necessarily be different for different chemical and physical processes. As

examples, for Brownian coagulation Kij � (i1/3 + j1/3)(i–1\3 + j–1/3) is appropriate [l,2],

for coagulation in shear flow Kij � (i1/3 + j1/3)3 has been used [3], and Kij � ij has been

used for growth of branched polymers [4]. The Smoluchowski coagulation equation

is well studied and comprehensive reviews of its properties have been given [5,6].

Several assumptions underly equation (1). Fragmentation is assumed to be ab-

sent, and spatial fluctuations and correlations are neglected. The present note is con-

cerned with the assumption of binary collisions, that the kinetics consists solely of

two-body aggregation events. At low densities the binary collision assumption obvi-

ously is well-founded, but at higher densities clustering events with more than two

particles must become important. The first corrections to pair aggregation evidently

come from three-particle events, and to include these the Smoluchowski equation (1)

is generalized to
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for n = 1, 2, 3, . . .. The kinetic cefficients Kij and Lijk are symmetric in the indices.

We will now study some properties of this generalized coagulation equation.

Moments of the size distribution: Mass conservation requires that the first moment

of the statistical distribution cn(t),

M1 = nc tn
n
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(3)

is constant in time. By multiplication of (2) with n, and summation over n, one easily

finds dM1/dt = 0, as should be, at least in the pregelation stage (see below). In the fol-

lowing it is convenient to normalize the total mass to M1 = l.

The zeroth moment of the statistical distribution,

M0 = c tn
n
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is the number of aggregates, which essentially determines the osmotic pressure.

Summing equation (2) over n, one deduces that the number of aggregates decays ac-

cording to
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The presence of the three-particle events obviously speeds up the reduction of the

number of aggregates.

The most spectacular property of the Smoluchowski coagulation equation (1) is

that for a class of kinetic coefficients Kij gelation occurs. Characteristic for this phase

transition is that an initial monomer distribution, say, produces an infinite cluster af-

ter a finite time tg, the gelation time. An alternative characterization is that the second

moment

M2(t) = n c tn
n

2 ( )� (6)

important for transport and scattering properties, diverges at t = tg. The presence of

three-body aggregation naturally should reduce the gelation time. One may ask, how-

ever, whether the presence of three-body aggregation influences the exponent charac-

terizing the divergence of M2 when t� tg, the behaviour with time of the loss of finite

clusters to the infinite cluster (the gel), and, more generally, the behaviour of the sta-

tistical size distribution both in the pregelation and the postgelation stage. We will

now answer some of these questions through an exactly soluble model.

Exact model solution: It is reasonable to assume that the kinetic coefficients in-

crease with the size of the coagulating aggregates. The simplest model is to assume

strict proportionality,
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Kij � ij; Lijk� ijk (7)

corresponding to the kinetic equation
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n = l, 2, . . .. The proportionality constant in Kij has been absorbed into the unit of time,

while the remaining constant in Lijk has been denoted � as a reminder that the

three-particle events are expected to be one order higher in the density. For � = 0 the

model equals the Flory model for high functionality. This model with binary colli-

sions only was solved exactly in the pregelation regime by McLeod [7]. In order to

solve (8) we introduce the generating function
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Differentiating G with respect to time and using (8) we find

	
	
G

t
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G

x
(10)

The solution of this partial differential equation is given implicitly as follows

G(x, t) = g(x + t[G + �G2 – 1 – �]) (11)

with an arbitrary function g, as is easily verified by insertion. Since G(x, 0) = g(x), one

naturally specifies the arbitrary function g by the initial size distribution cn(0).

Let us consider the pregelation regime, and let for simplicity the initial distribu-

tion consist of monomers only: c1(0) = l, cn(0) = 0 for n > 1. Then

g(x) = G(x,0) = ex (12)

and (11) takes the form

G(x, t) = ex t G G� � � �( )� �2 1 (13)

By expanding in (13) the generating function G in powers of z = ex one finds, ac-

cording to (9), cn(t) for small n. In particular we obtain

c1(t) = e–(1+�)t (14)
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That the size-three distribution c3, for � = 0 proportional to t2 for early times reflecting

a two-step aggregation process, now starts increasing proportional to time, is ex-

pected.

In order to find the complete size distribution, we express first G, given by (13), as

a power series in z = ex by means of Lagrange’s theorem:
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By (9) the coefficient of zk is kck(t). Thus,
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where we have introduced y = G + 1/(2�). Using the Rodrigues formula for the

Hermite polynomials,

Hn(x) = e
d
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we find finally the exact solution for the kinetics:
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As a check we take the limit �� 0 (no threebody events), using the asymptotic behav-

iour Hn(x) � 2nxn for large x, with the result
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first derived in [7].

In the opposite limit of only three-body aggregation, we introduce the scaled time

variable �t = t� and take the limit of large � afterwards. The result is
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The vanishing of all even size distribution functions is clearly due to the choice of an

initial situation with merely monomers present.

Gelation: The second moment (6) of the size distribution is determined by the gener-

ating function (9),

M2(t) =
dG x t

dx
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For our model differentiation of both sides of (13) with respect to x, and use of the

conservation law G(0, t) =1 in the sol phase, gives

M2 = 1 + t(M2 + 2�M2) (22)

Thus

M2 =
1

1 1 2� �t( )�
(23)

diverging at time

tg �
�
1

1 2�
(24)

This is interpreted as the onset of gelation. At times t > tg an infinite cluster is present,

constituting the gel phase, while the finite clusters make up the sol phase. One there-

fore expects the total mass of the finite clusters to decrease steadily in this post-

gelation regime, violating the pre-gelation conservation law M1 = 1.

The model is not fully defined until one specifies how the gel phase enters the

kinetics [4]. We use here the simplest alternative, based on the assumption that the

loss terms in the kinetic equation are the same in the pre- and postgelation stage, the

socalled Flory model. This assumption implies, that for a k-mer the decrease in the

number of coagulation events with finite-sized aggregates is precisely compensated

by the number of coagulation events with the gel.

In order to calculate how the mass M1 of the sol fraction decreases, we note that

M1(t) = G(0, t). By (13), therefore,

M e
t M M
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11 1
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This nonlinear equation obviously has the solution M(t) = 1, relevant for the

pregelation stage t � tg. However, for t > tg another solution M1(t) < 1 exists, to be asso-

ciated with the sol fraction in the postgelation stage. Fig.1 shows how the sol mass de-

creases with time. The asymptotic behaviour for short and long times is easily

deduced from (25):
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From these expressions, as well as from Fig. 1, one observes that although the

gelation time tg is shortened by three-body aggregation events, the gel mass at twice

the gelation time, say, is less than in the absence of three-body aggregation.
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The number of aggregates, M0, can be determined from (5) with the result

dM

dt
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At the onset of gelation this gives

M0(tg) =
3 8

6 12

�
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(27)

For � = 0 the number of aggregates at the onset of gelation has been reduced to one

half the original number, with � > 0 the number of aggregates is larger than this,

somewhere between 1/2 and 2/3 of the original number of aggregates (monomers).

For binary collision models scaling in the form of similarity solutions for long

times and for large clusters were studied by several authors (early references for con-

tinuous sizes are [8] and [9]). We investigate here for the present simple model the

scaling properties for large clusters near the onset of gelation, tg. The scaling hypothe-

sis is the assumption, that in the limit where k�� and t� tg, the size distribution has

the form

ck(t) � k–r! (k|1 – t/tg|
1/") (28)

characterized by two exponents # and ", and a scaling function !(x).

For the � = 0 size distribution (19), with gel point tg = 1, the well-known scaling

properties [10] are characterized by " = 1/2, # = 5/2 and !(x) = (2$)–1/2e–x/2. For the

other extreme � � �, (20) yields

ck(t) � (2$)–1/2 k–5/2e–k(1 – t/tg)
2/4

(29)
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Figure 1. The sol mass M1 as function of dimensionless time. The gel mass is 1 – M1. Here tg is the time at

the onset of gelation.



again with " = 1/2 and # = 5/2, but with !(x) = e–x/4. Thus, the scaling function !(x)

depends upon the amount of three-body events present, while the critical indices #
and " apparently do not.

Summary: The natural generalization of the Smoluchowski coagulation equation to

include three-body aggregation events is formulated and studied. For the special case

of kinetic coefficients corresponding to the Flory model, the time evolution of the size

distribution, initially monodisperse, can be followed exactly also in the presence of

three-particle aggregation. The three-particle events influence results in ways that are

easily understood, e.g. by shortening the gelation time. Universal features like critical

indices characterizing the distribution of large clusters near the onset of gelation are,

however, the same as for two-particle aggregation kinetics.
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